

	Skip to content

	
		
			
										Thomas’ .NET Developer Blog

												Talkin’ ’bout programmin’

										Menu and widgets
			

		

			

		
		
					
				
				
					Search for:
					
				
				
			
				Recent Posts
			
					PDFsharp/MigraDoc: Get Smaller PDF Files by Tweaking Compression Options
									
	
					EZFontResolver: a generic font resolver for PDFsharp and MigraDoc
									
	
					MigraDoc Made EZR: VB.NET Sample that creates PDF file
									
	
					Printing with MigraDoc 1.50 beta 2
									
	
					Using MigraDoc was never easier – “MigraDoc Made EZR”
									

		Recent Comments
	Thomas on XTextFormatter revisited: XTextFormatterEx2 for PDFsharp 1.50 beta 2
	may on XTextFormatter revisited: XTextFormatterEx2 for PDFsharp 1.50 beta 2
	Thomas on Using MigraDoc was never easier – “MigraDoc Made EZR”
	Thomas on XTextFormatter revisited: XTextFormatterEx2 for PDFsharp 1.50 beta 2
	Thomas on Printing with MigraDoc 1.50 beta 2

Archives
			March 2018
	December 2015
	October 2015
	September 2015
	August 2015
	July 2015
	March 2015
	May 2012

			Categories
			.NET

	C#

	MigraDoc

	PDFsharp

	Uncategorized

	VB.NET

			Meta
				Log in
	Entries feed
	Comments feed
	WordPress.org

						

		
	

	

	

	
		

		

	
	
		EZFontResolver: a generic font resolver for PDFsharp and MigraDoc
	

	
		EZFontResolver implements the IFontResolver interface that PDFsharp uses.

In your program, you simply call the AddFont method of EZFontResolver. You simply pass the filename of your font or a byte array containing the font data.

EZFontResolver just needs a little help: you have to specify a family name and you also have to indicate the style of the font you pass (regular, bold, italic, bold italic) and whether you want to enable simulation of bold and italic in PDFsharp.

Let’s look at some code. This is the code that creates an instance of EZFontResolver and assigns it to PDFsharp:

// Get the EZFontResolver.
EZFontResolver fontResolver = EZFontResolver.Get;
// Assign it to PDFsharp.
GlobalFontSettings.FontResolver = fontResolver;

One sample font I tried is Janitor. There is only a single file with Janitor Regular, therefore I enable simulation of bold and italic in PDFsharp:

// We only have Janitor Regular, no Bold, no Italic.
// We allow PDFsharp to simulate Bold and Italic for us.
fontResolver.AddFont("Janitor", XFontStyle.Regular,
 @"......fontsjanitorjanitor.ttf", true, true);

I also tested with four font faces from the Ubuntu family. Since I have faces for bold and italic, simulation is not needed here:

// The Ubuntu family has many font faces, so we do not need simulation here.
fontResolver.AddFont("Ubuntu", XFontStyle.Regular,
 @"......fontsubuntufontfamily0.80ubuntu-R.ttf");
fontResolver.AddFont("Ubuntu", XFontStyle.Italic,
 @"......fontsubuntufontfamily0.80ubuntu-RI.ttf");
fontResolver.AddFont("Ubuntu", XFontStyle.Bold,
 @"......fontsubuntufontfamily0.80ubuntu-B.ttf");
fontResolver.AddFont("Ubuntu", XFontStyle.BoldItalic,
 @"......fontsubuntufontfamily0.80ubuntu-BI.ttf");

When the fonts are registered, you can use them with PDFsharp or MigraDoc like you use any other font.

A final note: EZFontResolver is implemented as a singleton. Only one object of class will be created and each call of Get will return the same object. You can add the fonts only once and you will get an exception if a font with the same name already exists. If your program creates several documents, then register all fonts that are needed before creating the first PDF file.

You can download the complete EZFontResolver class as a ZIP file (about 2041 kiB in size).

Download EZFontResolver.zip.

The ZIP file contains a solution with a sample program and requires the PDFsharp package from NuGet. To use EZFontResolver with your project, just copy the file EZFontResolver.cs into your folder and add it to your project.

EZFontResolver is meant to make using private fonts more easy. Complete source code is in the ZIP file.

There is another example that implements IFontResolver: Sample that implements IFontResolver.

	

	
	
		Posted on December 11, 2015Author ThomasCategories .NET, C#, MigraDoc, PDFsharp			

			
			9 thoughts on “EZFontResolver: a generic font resolver for PDFsharp and MigraDoc”		

		
			
			
				
					
												Travis says:					

					
						
							
								January 8, 2016 at 8:59 pm							
						
											

									

				
					I noticed this somehow causes issues when trying to resolve.

This is a small fix, making it so it wont append the “|b” multiple times.

EzFontResolver:125

 public FontResolverInfo ResolveTypeface(string familyName, bool isBold, bool isItalic)

 {

 string faceName = familyName.ToLower() +

 (isBold && !familyName.Contains(“|b”) ? “|b” : “”) +

 (isItalic && !familyName.Contains(“|i”) ? “|i” : “”);

 EZFontInfo item;

 if (_fonts.TryGetValue(faceName, out item))

 {

 var result = new FontResolverInfo(item.FaceName, item.SimulateBold, item.SimulateItalic);

 return result;

 }

 return null;

 }

Means you wont be getting duplicate “|b” and causing the PdfDocumentRenderer.RenderDocument(); to fail.

				

				Reply
			
			
			
				
					
												Thomas says:					

					
						
							
								January 12, 2016 at 11:08 am							
						
											

									

				
					IMHO the fix is not needed and does not do any good, so I will not include it in my code (unless I see code that causes RenderDocument() to fail).

				

				Reply
			
		
	
			
				
					
												Thomas says:					

					
						
							
								August 4, 2016 at 8:10 pm							
						
											

									

				
					The check for duplicate “|b” and “|i” is currently needed because there is a bug in PDFsharp/MigraDoc 1.50 beta 3. It will be obsolete after the next PDFsharp/MigraDoc release. And I do not know when it will be published.

				

				Reply
			
		

	
			
				
					
												Travis says:					

					
						
							
								January 19, 2016 at 7:48 pm							
						
											

									

				
					Here’s an example using MigraDocs:

 EZFontResolver fontResolver = EZFontResolver.Get;

 // Assign it to PDFsharp.

 GlobalFontSettings.FontResolver = fontResolver;

 // We only have Janitor Regular, no Bold, no Italic.

 // We allow PDFsharp to simulate Bold and Italic for us.

 fontResolver.AddFont(“Janitor”, XFontStyle.Regular,

 @”……fontsjanitorjanitor.ttf”, true, true);

 Document _document = new Document();

 var font = “Janitor”;

 var style = _document.Styles[“Normal”];

 style.Font.Name = font;

 style.Font.Size = 9;

 var section = _document.AddSection();

 var table = section.AddTable();

 table.Style = “Table”;

 var column = table.AddColumn(“5cm”);

 var row = table.AddRow();

 row.HeadingFormat = true;

 row.Format.Alignment = ParagraphAlignment.Center;

 row.Format.Font.Bold = true;

 row.Cells[0].AddParagraph(“HeyHey”);

 var pdfRenderer = new PdfDocumentRenderer(true) { Document = _document };

 const string filename = “HelloWorld.pdf”;

 pdfRenderer.RenderDocument();

 pdfRenderer.Save(filename);

 // Save the document…

 pdfRenderer.PdfDocument.Save(“HelloWorld.pdf”);

 // …and start a viewer.

 Process.Start(filename);

				

				Reply
			
			
			
				
					
												Travis says:					

					
						
							
								January 19, 2016 at 7:54 pm							
						
											

									

				
					Woops, didn’t take out alot of code there.

 static void Main()

 {

 // Get the EZFontResolver.

 EZFontResolver fontResolver = EZFontResolver.Get;

 // Assign it to PDFsharp.

 GlobalFontSettings.FontResolver = fontResolver;

 // We only have Janitor Regular, no Bold, no Italic.

 // We allow PDFsharp to simulate Bold and Italic for us.

 fontResolver.AddFont(“Janitor”, XFontStyle.Regular,

 @”……fontsjanitorjanitor.ttf”, true, true);

 Document _document = new Document();

 var font = “Janitor”;

 var style = _document.Styles[“Normal”];

 style.Font.Name = font;

 var section = _document.AddSection();

 var table = section.AddTable();

 table.Style = “Table”;

 table.AddColumn(“5cm”);

 var row = table.AddRow();

 row.Format.Font.Bold = true;

 row.Cells[0].AddParagraph(“HeyHey”);

 var pdfRenderer = new PdfDocumentRenderer(true) { Document = _document };

 const string filename = “HelloWorld.pdf”;

 pdfRenderer.RenderDocument();

 pdfRenderer.Save(filename);

 // …and start a viewer.

 Process.Start(filename);

 }

				

				Reply
			
		

	
			
				
					
												Phil says:					

					
						
							
								March 2, 2016 at 11:51 am							
						
											

									

				
					Thanks for providing this, and for your other information about PdfSharp.

One change I made in my implementation, was to default to PlatformFontResolver when a font was not found. This enables us to load additional fonts but fall back to system fonts.

 var result = (_fonts.TryGetValue(faceName, out item)) ?

 new FontResolverInfo(item.FaceName, item.SimulateBold, item.SimulateItalic) :

 PlatformFontResolver.ResolveTypeface(familyName, isBold, isItalic);

We also removed the exception when a font has already been added:

var test = GetFont(fi.FaceName);

 if (test != null)

 return;

				

				Reply
			
		
	
			
				
					
												Asif Mehmood says:					

					
						
							
								March 19, 2016 at 8:06 am							
						
											

									

				
					Hi Thomas, I am facing a problem of

{“Must not change font resolver after is was once used.”}

 in the using the EZFontResolver class embedded into my project

Project Details are: MVC-5, **pdfSharp 1.50.3915-beta2**

Error caused by: GlobalFontSettings.FontResolver = fontResolver;

Please guide me to resolve this, as i am new to Invoice Generation

				

				Reply
			
			
			
				
					
												Thomas says:					

					
						
							
								March 22, 2016 at 8:36 pm							
						
											

									

				
					That problem was answered on SO:

http://stackoverflow.com/a/36154993/1015447

				

				Reply
			
		

	
			
				
					
												Isaac says:					

					
						
							
								October 18, 2016 at 9:15 pm							
						
											

									

				
					Thank you for posting this.

				

				Reply
			
		

		
	
	
		
		Leave a Reply Cancel reply
Your email address will not be published. Required fields are marked *
Comment
Name *

Email *

Website

	

	This site uses Akismet to reduce spam. Learn how your comment data is processed.

	
		Post navigation

		Previous Previous post: MigraDoc Made EZR: VB.NET Sample that creates PDF file
Next Next post: PDFsharp/MigraDoc: Get Smaller PDF Files by Tweaking Compression Options

	
		
	

	

	
		
						Privacy Policy			
				Proudly powered by WordPress			
		

	

