

	Skip to content

	
		
			
										Thomas’ .NET Developer Blog

												Talkin’ ’bout programmin’

										Menu and widgets
			

		

			

		
		
					
				
				
					Search for:
					
				
				
			
				Recent Posts
			
					PDFsharp/MigraDoc: Get Smaller PDF Files by Tweaking Compression Options
									
	
					EZFontResolver: a generic font resolver for PDFsharp and MigraDoc
									
	
					MigraDoc Made EZR: VB.NET Sample that creates PDF file
									
	
					Printing with MigraDoc 1.50 beta 2
									
	
					Using MigraDoc was never easier – “MigraDoc Made EZR”
									

		Recent Comments
	Thomas on XTextFormatter revisited: XTextFormatterEx2 for PDFsharp 1.50 beta 2
	may on XTextFormatter revisited: XTextFormatterEx2 for PDFsharp 1.50 beta 2
	Thomas on Using MigraDoc was never easier – “MigraDoc Made EZR”
	Thomas on XTextFormatter revisited: XTextFormatterEx2 for PDFsharp 1.50 beta 2
	Thomas on Printing with MigraDoc 1.50 beta 2

Archives
			March 2018
	December 2015
	October 2015
	September 2015
	August 2015
	July 2015
	March 2015
	May 2012

			Categories
			.NET

	C#

	MigraDoc

	PDFsharp

	Uncategorized

	VB.NET

			Meta
				Log in
	Entries feed
	Comments feed
	WordPress.org

						

		
	

	

	

	
		

		

	
	
		XTextFormatter revisited: XTextFormatterEx2 for PDFsharp 1.50 beta 2
	

	
		In an earlier post I described how to improve the XTextFormatter class for PDFsharp 1.32. The problem with that old version: the modified version of XTextFormatter has to be in an assembly with access to the internals of PDFsharp, so you have to compile PDFsharp in order to have an enhanced formatter.

With PDFsharp 1.50 beta things are simpler: all the XTextFormatter class needs is public now and you can use an enhanced version of XTextFormatter even if you are working with the NuGet package of PDFsharp.

My XTextFormatterEx2 has the measuring functionality from XTextFormatterEx. Additionally it allows to control the line spacing.

To measure the height of a text block, you can still call tf.PrepareDrawString() as shown in my older post.

My post about XTextFormatterEx describing the measuring features.

One way of setting the line spacing: Absolute. You can set the line spacing to e.g. 10 points and the line spacing will be 10 points, even if the font size is 24 or 72. So set the line spacing with care or there will be some overlapping.

XTextFormatterEx2 tf = new XTextFormatterEx2(gfx,
 new XTextFormatterEx2.LayoutOptions
 {
 Spacing = 10,
 SpacingMode =
 XTextFormatterEx2.SpacingMode.Absolute
 });

The other line spacing mode is Relative. Set a spacing of 0 and you get the behaviour of XTextFormatter and XTextFormatterEx. Set positive values to increase the line spacing, set negative values to reduce the line spacing.

tf = new XTextFormatterEx2(gfx,
 new XTextFormatterEx2.LayoutOptions
 {
 Spacing = 5,
 SpacingMode =
 XTextFormatterEx2.SpacingMode.Relative
 });

And finally the last mode I implemented so far: Percentage. Set 100 for the default behaviour, set 200 for double line spacing, 150 for 1.5 line spacing. Or set 90 for only 90% of the normal line spacing.

tf = new XTextFormatterEx2(gfx,
 new XTextFormatterEx2.LayoutOptions
 {
 Spacing = 150,
 SpacingMode =
 XTextFormatterEx2.SpacingMode.Percentage
 });

You can download the complete XTextFormatterEx2 class as a ZIP file (about 15 kiB in size).

Download XTextFormatterEx2.zip.

The ZIP file contains a solution with a sample program and requires the PDFsharp package from NuGet. To use XTextFormatterEx2 with your project, just copy the file XTextFormatterEx2.cs into your folder and add it to your project.

	

	
	
		Posted on September 21, 2015Author ThomasCategories .NET, C#, PDFsharp			

			
			5 thoughts on “XTextFormatter revisited: XTextFormatterEx2 for PDFsharp 1.50 beta 2”		

		
			
			
				
					
												JK says:					

					
						
							
								January 17, 2019 at 7:39 pm							
						
											

									

				
					Thanks for this, very useful 🙂

				

				Reply
			
		
	
			
				
					
												William says:					

					
						
							
								August 12, 2019 at 2:14 pm							
						
											

									

				
					You ought to post this as a Nuget Package.

				

				Reply
			
			
			
				
					
												Thomas says:					

					
						
							
								February 18, 2020 at 7:23 am							
						
											

									

				
					This is a demo, therefore it is not available as a NuGet package. Nice if it works for you, but in many cases applications will need more and you will have to enhance the code.

				

				Reply
			
		

	
			
				
					
												may says:					

					
						
							
								October 31, 2020 at 3:29 pm							
						
											

									

				
					I used it and works great. Thank you so much.

PDF sharp last updated year is 2015. Do you stop improve anymore? Maybe you can upload github for public.

				

				Reply
			
			
			
				
					
												Thomas says:					

					
						
							
								February 2, 2021 at 8:07 am							
						
											

									

				
					PDFsharp is available on github for years now. NuGet packages were published in 2017, 2018, and 2019.

				

				Reply
			
		

		
	
	
		
		Leave a Reply Cancel reply
Your email address will not be published. Required fields are marked *
Comment
Name *

Email *

Website

	

	This site uses Akismet to reduce spam. Learn how your comment data is processed.

	
		Post navigation

		Previous Previous post: Using private fonts with PDFsharp 1.50 beta 2/3 or MigraDoc
Next Next post: Using MigraDoc was never easier – “MigraDoc Made EZR”

	
		
	

	

	
		
						Privacy Policy			
				Proudly powered by WordPress			
		

	

