

	Skip to content

	
		
			
										Thomas’ .NET Developer Blog

												Talkin’ ’bout programmin’

										Menu and widgets
			

		

			

		
		
					
				
				
					Search for:
					
				
				
			
				Recent Posts
			
					PDFsharp/MigraDoc: Get Smaller PDF Files by Tweaking Compression Options
									
	
					EZFontResolver: a generic font resolver for PDFsharp and MigraDoc
									
	
					MigraDoc Made EZR: VB.NET Sample that creates PDF file
									
	
					Printing with MigraDoc 1.50 beta 2
									
	
					Using MigraDoc was never easier – “MigraDoc Made EZR”
									

		Recent Comments
	Thomas on XTextFormatter revisited: XTextFormatterEx2 for PDFsharp 1.50 beta 2
	may on XTextFormatter revisited: XTextFormatterEx2 for PDFsharp 1.50 beta 2
	Thomas on Using MigraDoc was never easier – “MigraDoc Made EZR”
	Thomas on XTextFormatter revisited: XTextFormatterEx2 for PDFsharp 1.50 beta 2
	Thomas on Printing with MigraDoc 1.50 beta 2

Archives
			March 2018
	December 2015
	October 2015
	September 2015
	August 2015
	July 2015
	March 2015
	May 2012

			Categories
			.NET

	C#

	MigraDoc

	PDFsharp

	Uncategorized

	VB.NET

			Meta
				Log in
	Entries feed
	Comments feed
	WordPress.org

						

		
	

	

	

	
		

		

	
	
		Using private fonts with PDFsharp 1.50 beta or MigraDoc
	

	
		Note: The FontResolver interface has changed between PDFsharp 1.50 beta 1 and PDFsharp 1.50 beta 2. This post describes the obsolete solution for PDFsharp 1.50 beta 1.

Sample code for PDFsharp 1.50 beta 2.

PDFsharp 1.50 beta 1 implements a new mechanism for private fonts (fonts that are not installed on the system). You simply implement IFontResolver and assign this to a global property:

// That's all it takes to register your own fontresolver
GlobalFontSettings.FontResolver = new DemoFontResolver();

The interesting part is IFontResolver and how you implement it.

The IFontResolver interface requires two methods: ResolveTypeface and GetFont.

I derived my class DemoFontResolver from PDFsharp’s class FontResolverBase. For this demo I downloaded two free font: Janitor (regular only) and Ubuntu (using regular, italic, bold, bold italic).

Here is the ResolveTypeface code:

public override FontResolverInfo ResolveTypeface(string familyName, bool isBold, bool isItalic)
{
 // Ignore case of font names.
 var name = familyName.ToLower();

 // Deal with the fonts we know.
 switch (name)
 {
 case "ubuntu":
 if (isBold)
 {
 if (isItalic)
 return new FontResolverInfo("Ubuntu#bi");
 return new FontResolverInfo("Ubuntu#b");
 }
 if (isItalic)
 return new FontResolverInfo("Ubuntu#i");
 return new FontResolverInfo("Ubuntu#");

 case "janitor":
 return new FontResolverInfo("Janitor#");
 }

 // We pass all other font requests to the default handler.
 // When running on a web server without sufficient permission, you can return a default font at this stage.
 return base.ResolveTypeface(familyName, isBold, isItalic);
}

The other method, GetFont, must return the TTF file in a byte array.

My implementation of GetFont looks like this:

/// <summary>
/// Return the font data for the fonts.
/// </summary>
public override byte[] GetFont(string faceName)
{
 switch (faceName)
 {
 case "Janitor#":
 return FontHelper.Janitor;

 case "Ubuntu#":
 return FontHelper.Ubuntu;

 case "Ubuntu#b":
 return FontHelper.UbuntuBold;

 case "Ubuntu#i":
 return FontHelper.UbuntuItalic;

 case "Ubuntu#bi":
 return FontHelper.UbuntuBoldItalic;
 }

 return base.GetFont(faceName);
}

The code that does the work of retrieving the fonts is hidden in a helper class. I added the fonts to the project using the “Embedded Resource” compile type. I then used the free dotPeek tool from JetBrains to find the names of the embedded resources.

/// <summary>
/// Helper class that reads font data from embedded resources.
/// </summary>
public static class FontHelper
{
 public static byte[] Janitor
 {
 get { return LoadFontData("MyFontResolver.fonts.janitor.Janitor.ttf"); }
 }

 // Tip: I used JetBrains dotPeek to find the names of the resources (just look how dots in folder names are encoded).
 // Make sure the fonts have compile type "Embedded Resource". Names are case-sensitive.
 public static byte[] Ubuntu
 {
 get { return LoadFontData("MyFontResolver.fonts.ubuntufontfamily0._80.Ubuntu-R.ttf"); }
 }

 public static byte[] UbuntuBold
 {
 get { return LoadFontData("MyFontResolver.fonts.ubuntufontfamily0._80.Ubuntu-B.ttf"); }
 }

 public static byte[] UbuntuItalic
 {
 get { return LoadFontData("MyFontResolver.fonts.ubuntufontfamily0._80.Ubuntu-RI.ttf"); }
 }

 public static byte[] UbuntuBoldItalic
 {
 get { return LoadFontData("MyFontResolver.fonts.ubuntufontfamily0._80.Ubuntu-BI.ttf"); }
 }

 /// <summary>
 /// Returns the specified font from an embedded resource.
 /// </summary>
 static byte[] LoadFontData(string name)
 {
 var assembly = Assembly.GetExecutingAssembly();

 using (Stream stream = assembly.GetManifestResourceStream(name))
 {
 if (stream == null)
 throw new ArgumentException("No resource with name " + name);

 int count = (int)stream.Length;
 byte[] data = new byte[count];
 stream.Read(data, 0, count);
 return data;
 }
 }
}

You can download the complete demo application as a ZIP file (about 2 MiB in size due to the embedded fonts).

Download FontResolverDemo_beta1.zip

The font resolver applies to PDFsharp and it will also be used when you create PDF files from MigraDoc.

The ZIP file contains two console applications, one demo for PDFsharp and one demo for MigraDoc.

The solution uses PDFsharp 1.50 beta from NuGet. In Visual Studio (I used the free Community Edition Visual Studio 2013) in the Solution Explorer, select Manage NuGet Packages for Solution from the context menu of the solution.

	

	
	
		Posted on March 15, 2015Author ThomasCategories .NET, C#, MigraDoc, PDFsharp			

			
			2 thoughts on “Using private fonts with PDFsharp 1.50 beta or MigraDoc”		

		
			
			
				
					
												Jon Smith says:					

					
						
							
								November 23, 2015 at 2:21 pm							
						
											

									

				
					Hi Thomas,

I am using the this form of FontResolver and it works fine. However I have changed the way my FontResolver works and I wanted to Unit Test it, but had problems with multiple settings of GlobalFontSettings.FontResolver.

I have tried a few things, like only adding setting the FontResolver if it is null but that doesn’t seem to work on multiple runs, as GlobalFontSettings.FontResolver == null, but when I then set it I get an InvalidOperationException with the message “Must not change font resolver after is was once used.”

Have you any suggestions on how to Unit Test this?

				

				Reply
			
			
			
				
					
												Thomas says:					

					
						
							
								December 11, 2015 at 8:48 pm							
						
											

									

				
					Hi, Jon,

Probably it will work if you turn your font resolver into a singleton. Create a single instance of the font resolver, remember that instance in a static field and use it with every test.

I implemented my EZFontResolver today before I saw your comment. It uses a singleton. If you are not familiar with the singleton design pattern, then maybe take a look at my EZFontResolver.

				

				Reply
			
		

		
	
	
		
		Leave a Reply Cancel reply
Your email address will not be published. Required fields are marked *
Comment
Name *

Email *

Website

	

	This site uses Akismet to reduce spam. Learn how your comment data is processed.

	
		Post navigation

		Previous Previous post: Hello, World!
Next Next post: PDFsharp: Improving the XTextFormatter class: Measuring the height of the text

	
		
	

	

	
		
						Privacy Policy			
				Proudly powered by WordPress			
		

	

