

	Skip to content

	
		
			
										Thomas’ .NET Developer Blog

												Talkin’ ’bout programmin’

										Menu and widgets
			

		

			

		
		
					
				
				
					Search for:
					
				
				
			
				Recent Posts
			
					PDFsharp/MigraDoc: Get Smaller PDF Files by Tweaking Compression Options
									
	
					EZFontResolver: a generic font resolver for PDFsharp and MigraDoc
									
	
					MigraDoc Made EZR: VB.NET Sample that creates PDF file
									
	
					Printing with MigraDoc 1.50 beta 2
									
	
					Using MigraDoc was never easier – “MigraDoc Made EZR”
									

		Recent Comments
	Thomas on XTextFormatter revisited: XTextFormatterEx2 for PDFsharp 1.50 beta 2
	may on XTextFormatter revisited: XTextFormatterEx2 for PDFsharp 1.50 beta 2
	Thomas on Using MigraDoc was never easier – “MigraDoc Made EZR”
	Thomas on XTextFormatter revisited: XTextFormatterEx2 for PDFsharp 1.50 beta 2
	Thomas on Printing with MigraDoc 1.50 beta 2

Archives
			March 2018
	December 2015
	October 2015
	September 2015
	August 2015
	July 2015
	March 2015
	May 2012

			Categories
			.NET

	C#

	MigraDoc

	PDFsharp

	Uncategorized

	VB.NET

			Meta
				Log in
	Entries feed
	Comments feed
	WordPress.org

						

		
	

	

	

	
		

		

	
	
		PDFsharp: Improving the XTextFormatter class: Measuring the height of the text
	

	
		PDFsharp includes an XTextFormatter class that allows to draw text with line breaks.

A frequently requested feature: how to measure the height of the text before drawing it? I decided to add this measuring functionality. I found it was more difficult than I expected.

The unexpected problems were of a technical kind: the class XTextFormatter uses internal members of the XFont class. Therefore you cannot use my new class XTextFormatterEx with the NuGet packages from PDFsharp.

As of now (July 17, 2015) there is one way to use my XTextFormatterEx: download the source package of PDFsharp 1,32 and copy XTextFormatterEx.cs into the folder where XTextFormatter.cs is: PDFsharpcodePdfSharpPdfSharp.Drawing.Layout

In your Visual Studio solution you have to add references to the PDFsharp projects using Add => Existing Project. Do not forget to include the file XTextFormatterEx.cs in the project “PdfSharp”.

Sounds complicated? Sorry, it is complicated. I was hoping that it would be possible to include the class XTextFormatterEx.cs in the application project and use it with either the NuGet package, the pre-compiled DLLs, or the source package. But the references to internal members of the XFont class rule out two of these three ways. Maybe all three methods will work with future versions of PDFsharp.

And now for the good news: let’s talk about the new features.

A normal call to the XTextFormatter class looks like this:

tf.DrawString(text, font, XBrushes.Black,
 rect, XStringFormats.TopLeft);

If the rectangle is too small, the text will be truncated. But you cannot find out how much text was drawn and how much was truncated.

And now we look at the new methods:

XTextFormatterEx tf = new XTextFormatterEx(gfx);
int lastCharIndex;
double neededHeight;

// Draw the text in a box with the optimal height
// (magic: we know that one page is enough).
XRect rect = new XRect(40, 100, 250, double.MaxValue);
//tf.Alignment = ParagraphAlignment.Left;
tf.PrepareDrawString(text, font, rect,
 out lastCharIndex, out neededHeight);
rect = new XRect(40, 100, 250, neededHeight);
gfx.DrawRectangle(XBrushes.SeaShell, rect);
tf.DrawString(XBrushes.Black, XStringFormats.TopLeft);

When calling PrepareDrawString you specify the text and provide a rectangle with the available space (a height of double.MaxValue won’t be a good idea for real world applications).

“lastCharIndex” returns the index of the last character that can be drawn in the rectangle. This will be -1 if the complete text was drawn.

“neededHeight” will return the space that is needed for the text. This will be a negative value if no text can be drawn. If the rectangle is too small even for a single line, this will be the height of the first line; in this case “neededHeight” will be larger than the height of the original rectangle. If the text will be truncated, this will be the height needed for the truncated string.

To draw the text, you can and should use a new variation of DrawString that only takes a brush and an XStringFormat as parameters. This will draw the text that was most recently prepared. This is more efficient than using the DrawString method that also takes the text and the font as this version will layout the text again.

You can download the complete XTextFormatterEx class as a ZIP file (about 5 kiB in size).

Download XTextFormatterEx.zip

Please note that this post from 2015 applies to PDFsharp 1.32.

With PDFsharp 1.50 and later you need a slightly modified version, XTextFormatterEx2, that no longer needs “internals” from PDFsharp.

XTextFormatterEx2 for PDFsharp 1.50 and later.

	

	
	
		Posted on July 17, 2015May 7, 2017Author ThomasCategories C#, PDFsharp			

			
			7 thoughts on “PDFsharp: Improving the XTextFormatter class: Measuring the height of the text”		

		
			
			
				
					
												Greg says:					

					
						
							
								September 17, 2015 at 11:01 pm							
						
											

									

				
					Thank you so much for this!!!

				

				Reply
			
		
	
			
				
					
												Greg says:					

					
						
							
								September 17, 2015 at 11:20 pm							
						
											

									

				
					Thank you! This makes the library so much more usable.

				

				Reply
			
		
	
			
				
					
												Greg says:					

					
						
							
								September 17, 2015 at 11:21 pm							
						
											

									

				
					(also seems to compile under the Silverlight version of the library)

				

				Reply
			
		
	
			
				
					
												Mary says:					

					
						
							
								June 15, 2016 at 8:25 am							
						
											

									

				
					This is brilliant, and so handy. PDFSharp just gets better and better.

				

				Reply
			
		
	
			
				
					
												Luis says:					

					
						
							
								June 30, 2016 at 7:09 am							
						
											

									

				
					Thanks this is great. I recommend using reflection to access private fields in order to be able to use pdf sharp from the nuget packages.

				

				Reply
			
		
	
			
				
					
												Bjorn says:					

					
						
							
								October 26, 2016 at 1:31 pm							
						
											

									

				
					Thanks for your help.

To make this class work in a custom project there are some minor changes that needs to be done to get around the problem with the internal declared properties used.

The code also uses two consts that are internal but if you look at what the represent they could easy and pretty safe moved to you you custom project.

The consts represent Linefeed and Carriage return and I guess that they won’t change. If they do I guess there will be bigger problems.

So what did I change:

Added these const to the class.

 private const char CarriageReturn = ‘\x0D’; // ignored by lexer

 private const char Linefeed = ‘\x0A’; // Line feed

Then there are some references to internal variables that need to be changed, some easier than other.

The easy ones just replace .width with .Width. Same goes for height. There are also some .x and .y that needs to be changed to .X and .Y to access public properties instead of local

The hard parts are these two:

 this.cyAscent = lineSpace * font.cellAscent / font.cellSpace;

 this.cyDescent = lineSpace * font.cellDescent / font.cellSpace;

They should look like this instead:

 this.cyAscent = lineSpace * font.FontFamily.GetCellAscent(font.Style) / font.FontFamily.GetLineSpacing(font.Style);

 this.cyDescent = lineSpace * font.FontFamily.GetCellAscent(font.Style) / font.FontFamily.GetLineSpacing(font.Style);

I hope this could be to any help.

				

				Reply
			
			
			
				
					
												Thomas says:					

					
						
							
								December 3, 2016 at 9:56 pm							
						
											

									

				
					You don’t have to make these changes if you use the latest source PDFsharp 1.50 and my latest revision XTextFormatterEx2. The current version of PDFsharp makes everything “public” that XTextFormatterEx2 needs. Not everything was “public” when I implemented the XTextFormatterEx class shown in this post.

				

				Reply
			
		

		
	
	
		
		Leave a Reply Cancel reply
Your email address will not be published. Required fields are marked *
Comment
Name *

Email *

Website

	

	This site uses Akismet to reduce spam. Learn how your comment data is processed.

	
		Post navigation

		Previous Previous post: Using private fonts with PDFsharp 1.50 beta or MigraDoc
Next Next post: MigraDoc: Show Progress While Rendering a Document

	
		
	

	

	
		
						Privacy Policy			
				Proudly powered by WordPress			
		

	

